
r4

JTpack90: A Parallel, Object-Based, Fortran 90 Linear
Algebra Package “

John A. Turner * Robert C. Ferrell $ Douglas B. Kothe 5

Abstract

We have developed an object-based linear algebra package, currently with emphasis
on sparse Krylov methods, driven primarily by needs of the Los Alamos National
Laboratory parallel unstructured-mesh casting simulation tool Telluride. Support
for a number of sparse storage formats, methods, and precondltioners have been
implemented, driven primarily by application needs. We describe our object-b~ed
Fortran 90 approach, which enhances maintainability, performance, and extensibility,
our parallelization approach using a new portable gather/scatter library (P GSLib),
current capabilities and future plans, and present preliminary performance results on
a variety of platforms.

1 Introduction
An effort was initiated recently at Los Alamos National Laboratory (LANL) to build
a new 3-D high-resolution tool for simulating casting processes, i.e. the flow of molten
material into molds and the subsequent cooling and solidification of the material. The
simulation process includes incompressible free-surface flow during mold filling, heat
transfer-driven convective flows during solidification, and interface physics such as
surface tension and phase change, all in complex geometries. This tool is known as
Telluride, and is described more fully elsewhere in these proceedings [8].

Several decisions were made early in the design stages of Telluride which initiated
and drove development of JTpack90.

. An unstructured-mesh finite-volume approach would be used to the complex
geometries that would be modelled.

. Fortran 90 (F90) was chosen as the implementation language. Though this was
a fairly risky decision at the time due to the relative scarcity of stable compilers,
we felt that the advantages over alternatives warranted the risk. For example,
F90 offers numerous syntactic improvements to Fortran 77 (F77), some of which
will be discussed later. Compared with C++, we like the fact that arrays are
first-class objects in F90, whereas in C++ every code effort seems to have its own
array class. Also, the F90 standard had been approved and was in effect. Though
this is not as much of a problem with C++ as it was when this effort was started,
the standard still has not been finalized. We are now confident that our decision
was the correct one, as F90 compilers have become available for virtually all
platforms, and the syntactic advantages of F90 have, among other things, allowed

*Supported by the Department of Energy Accelerated Strategic Computing Initiative Program (ASCI)
‘Los Alamos National Laboratory (LANL) ~Transport Methods Group (XTM), MS B226, Los Alamos,

NM 87545, turner@lanLgou, http: //lune .mst. led.. gov/\-{}twrner
‘Cambridge Power Computing Associates, Ltd., 2 Still St., Brookline, MA 02146, ferrell@cpca.com
‘LANL, Fluid Dynamics Group (T-3), MS B216, Lou Atamos, NM 87545, dbk@hni.gov

2

●

●

us to write code which is maintainable and easy for new members to the team to
become productive with.

Parallelism would be via explicit message-passing using MPI (Message Parsing In-
terface). In addition, the message-passing functionality would be encapsulated in
an F90-accessible library, thus hiding the details from the higher-level code. This
library is known as PGSLib, and is described elsewhere in these proceedings [2].

Robust and efficient solution of large systems of linear equations would be
essential, as they would arise in several aspects of a simulation [e,g, heat
conduction, our projection method for the Navier-Stokes equations, etc.).

One of USI had developed an F77 package, JTpack77 [10], which implements a
number of Krylov subspace methods for solving linear systems of equations. Since
that package was being used successfully for a number of efforts internal to LANL, it
made sense to consider it aa a candidate from w~lch to build a similar P90 package
for the Telluride effort (and eventually other applications). In addition, although
there are numerous other high-quality packages for iteratively solving systems of linear
equations in other languages, such aa ITPACK [7] and NSPC!G [6] in F77, AZTEC2 [4]
and PETSC3 [1] in C, and Diffpack4 in C++t we knew of no such effort in F90. So
development of JTpack905 began with JTpack776 as a starting point, driven by the
needs of Telluride7.

2 Overview of JTpack90

2.1 Design Goals
Although JTpack90 is a tool driven by the needs of a particular application, we
nevertheless wanted to design an infrastructure that would be general enough and
flexible enough to allow JTpack90 to be used by other codes as well. So some of the
design goals of JTpack90 were to provide

. support for b~ic sparse storage formats within a framework that would allow new

formats to be added easily,

● basic solvers and preconditioners, again within a framework that would allow new
methods and preconditioners to be added easily,

● support for matrix-free operation (in which the coefficient is not made available
to JTpack90), and finally,

● support for application-specific preconditioning.

The last two items are particularly important for Telluride, since explicit construc-
tion of the coefficient is difficult if not impossible for some of the operators in Telluride,
and since in most cases custom preconditioners based on knowledge of the underlying
physics or numerics are far superior to general precondltioners.

2.2 Status
JTpack90 currently provides several basic Krylov subspace iterative solvers (e.g.
CG, GMRES, TFQMR, etc.), along with a number of precondltioners (e.g. IC, ILU,
mult i~tep weighted Jacobi and SSOR, etc.). These are unremarkable, and descriptions

lJAT
‘http : //WUU .cs. sandia. gov/HPCCIT/eztec .html/
%ttp : /lwww .mcs. anl. gov/petsc/petsc .html
4http: //uuR. OS1O.sintef .no/diffpack/
5http: //lune. mst. lenl. gov/\”{]turner/JTpack90. html
6http: //lune .mst. lanl. gov/\”{>turner/JTpack77. html
Thttp ~//P=ly. 1~1. goviTellmidelTell~ide .ht~

1!

3

can be found elsewhere (e.g. [9]). More intcresting is the object-based infrastructure
within which these methods and precondltioners are embedded, and wtilch allows easy
implementation of new storage formats, methods, and preconditioners.

A great deal of effort has not been expended on general preconditioners, since we
knew that we would be using JTpack90 primarily in matrix-free mode with Telluride
and would be using preconditioners customized for the physics / numerics at hand.

3 Object-Based Design
Although even JTpack77 implements a form of object-based design, it is necessarily
crude due to the lack of syntactic support for such programming in F77 (for more on
how this is accomplished in JTpack77, see [10]). F90 provides a number of syntactic
advances over F77, includlng:

●

●

●

●

●

derived types, similar to C structures, which provide user-defined types which
may consist of entities of various types,

generic procedures, which provide polymorphism,

array-valued functions,

overloading of intrinsic, and

modules, which allow encapsulation and access control via public and private
attributes.

Modules in particular are a powerful addition to the language, and although they
can be used in a number of ways, they are often used to group entities that are related
in some manner. Two extreme options for a package such as JTpack90 would be:

●

●

Bundle routines functionally. That is, all routines that perform matrix-vector
multiplication for the various sparse storage types could be grouped in a single
module. That module would then be used by any routine needing to perform
matrix-vector multiplication.

Use modules to create “classes”. That is, bundle a type definition, along with all
the routines necessary to perform operations using that type. -

In JTpack90 we have chosen primarily the latter approach. Although all routines
in JTpack90 are encapsulated in modules, there are two primary types of modules.

. “CISSS” modules each contain a derived-type definition for a sparse storage type,
along with all the routines to operate on that type. An edited version
JTpack90 module that defines the class for the ELLPACK-ITPACK
storage format [9] is shown below.

module JT_ELL_module
implicit none
type JT_ELL-matrix

., :) , pointer :: valuesreal, dimension(”
integer, dimension(: , :) , pointer :: map

end type JT_ELL_mat r ix
int erf ace Mat@ful

module proceti.Ar_
end int erf ace
private
public :: JT.ELL_matrix, HatFlul

contains
function Ax(a,x)

type (JT-ELL-mat rix) , intent (in) :: a

of the
(ELL)

4

real, intent, dimension(:) :: x
real, dimension(SIZE(x)) :: AX
integer :: j

Ax = zero
do j=l,SIZE(azvalues, dim=2)

where (a%map(:,j) /= O) Ax = Ax + a%values(:,j)*x(a~map(:,j))

end do

return
end function Ax

end’’module JT_ELL.module

The definition of the JT_ELLmatri.x type appearsin the specification portionof
the module, and consists of two rank-2 arrays, one real (for the values of the
matrix) and one integer (for the column indices).

Only the function for performing matrix-vector multiplication using ELL storage
is shown. The real module also contains routines for assigning, loading, dumping,
writing, extracting the diagonal from, computing the norm of, computing an
incomplete factorization of, etc., an ELL object.
Note that the F90 intrinsic for performing matrix multiplication, Matl!ul, is
overloaded by defining a new routine to be used when the arguments match
those ofthe module procedure Ax. Note also that Ax is an array-valued function,
meaning that it returns an array rather than ascalar.

. “Solver” modules each contain all the routines that implement a particular
algorithm, such as CG, GMRES, etc. A modHied version of the JTpaclc90
GMRES module is shown below.

module JT.GMRES_module
implicit none
interface JT_GMRES

module procedure
module procedure

end interface
private
public :: JT_GMRES

cent ains

GMRES_Full
GMRES_ELL

subroutine GMRES_Full (status, b, control, x, cpu, %

rnormt, errt, rnorm, err, a, ap)
use JT_Full_module
real, intent(in), dimension:,:) :: a
real, intent(inout), dimension:,:) :: ap

#include 8’GMRhS-guts.F90”
end subroutine GMRES_Full
subroutine GMRES_ELL (status, b, control, x, cpu, .%

rnormt, errt, rnorm, err, a, ap)
use JT_ELL_module
type(JT_ELL_matrix), intent :: a
type(JT_ELL_matrix), i.ntent(inout) :: ap

#include “GM?ES-guts.F90”
end subroutine GMRES_ELL

end module JT-GMRES_module

Two routines are shown, one for standard, full-storage coefficients andone for
ELL coefficients. Note that the only dHFerencebetween the two routines is the

?

use statement and the declarations of the arrays. Everything else is common
between the routines, and is hence pulled out and stored in a common fiIe.

Though in an important sense this shows the sigm”ficant advances in abe$racticm
allowed by F90, it also illustrates a shortfall, for these cpp acrobatics woukl not
be necessary if F90 had something akin to temP1ates in C+-+.

Note that this is a hybrid approach in that some of the routines dealing with matrices
of a particular storage type reside in the solver modules rather than in the class modules.
This was a conscious decision, since it makes adding a new solver much easier at the
expense of requiring slightly more effort when adding a new storage type. With our
approach, to add a new solver one must simply create a new solver module. Adding a
new storage type requires creating a new class module as well as adding a new routine
(though really just a “template” with the correct declarations and an include statement)
to each of the solver modules.

4 Parallelization via PGSLib [2]
Details of our parallelization strategy are given in [8], so we only describe it briefly
here. For JTpack90, PGSLib provides global reduction (e.g. dot product, etc.) and
gather/scatter functionality. The latter is used for the indirect addressing inherent
in forming matrix-vector products using sparse storage for matrices. That is, recall
the matrix-vector kernel for a matrix stored in ELL format shown previously. Using
PGSLib this kernel becomes:

Y = zero

call PGSLib_gather (y, x-pe, j a_pe, j a, trace, mask= (j a_pe /= O))
y-pe = SUM(a.pe*y, dim=2)

where _pe in a variable name denotes the segment of the array local to a particular
processor, and trace is a P GSLib type containing information about how the data is
dktributed, etc.

5 Results
In thk section we present parallel results using Telluride. Note that although solution
of the linear systems represent the majority of time spent in the simulations, all results
are for the whole code, not just JTpack90. J Tpack90 was operated in matrix-free
mode using reverse communication. Global reduction and gather/scatter functionalisty
was provided by P GSLib, and no preconditioning is used.

5.1 Implicit Heat Conduction on a Regularly-Connected Mesh
Consider the following conduction test problem, which~as an exact analytic solution [5].
Heat is introduced at time zero to an initially cold brick of material on its ym= ZZ face
with a high applied temperature. Both yz faces and the ~minxz face are maintained cold
with a low applied temperature, while the two Zy faces are insulated. The temperature
within the brick attains a steady state d~tribution, which is computed in Telluride by
marching the unsteady heat conduction equation forward in time until the temperature
distribution does not change. Steady state was attained in these simulations after five
time steps, but one large time step, however, could also achieve the desired result since
th_T41ur$d~ ccmd~wtion algeritbrn is fuH@rrpEcit: T3ie iinear system of-equations
are solved by JTpack90 using CG.

First consider a parallel simulation of this problem on a multi-processor shared-
memory Digital AlphaServer 8400. Here we partition the brick with a 16 x 16 x 192
mesh that is block decomposed evenly along the z axis, i.e. , each processor receives
a 16 x 16 x IVz mesh, where Nz is some subset of the total mesh in the z d~rection

(192). Table 1 displays the excellent parallel efficiencies realized for this problem on

—-

6

-. —..

, !,-.
$.*”’. ’r”r”

2
3
4’
6
8

CPU Time
(ps/c.d/cycle)”

583

258

162
129

93
69

a

7
1.00
1.13

1.20

1.13
1.04

1.06

“http: //Hww. dec. corn/info/alphaserver/
products.htrnl

TABLE 2

Implicit heatj30won 16x 16x 320 mesh (67MHz IBMSP2). a

I CPU Time

Processors (ps/cell/cycle) Efficiency
1 1113 1.00
2 635 0.88

10 124 0.90
20 65 0.86

‘http: //uww. rs6000. ibm. com/brdware/
largescale/index.html

this architecture. The superlinear speedups achieved are likely due to cache effects
(decreased cache utilization on fewer processors).

Now consider the parallel simulation on a multi-processor distributed-memory IBM
SP2. Here we partition the brick with a 16 x 16 x 320 mesh, and again block decompose
the mesh evenly along the z axis. The paraHeI efficiencies, as shown in Table 2, are
still quite high, being >85~0 for all processor numbers tested. This performance is
surprising in light of the fact that this mesh is treated as fully unstructured (despite its
being simply-connected), necessitating the use of many parallel gather/scatter functions
from PGSLib [2].

Though these are encouraging results, we emphasize that these represent a rather
idealized problem in that the decomposition is optimal. A somewhat more realistic
result is given in the next section.

5.2 SolicMication on an Unstructured Hex Mesh
~~e..l2sh@Sa.648Q-~1e.~.ent -W#,FlxkEre&-hex-inesb-fOr-a--pa~tcmtior-the- fiAl+L-
inertial confinement fusion program. The chalice consists of a hemispherical shell two
inches in diameter. The shell is gated at its pole with a cylindrical ‘hot topn one inch
in diz - ~+- -n ~ about 1.5 inaes tall. The hot top serves to continuously SUpplYliquid
metal to me mmispherical shell during fWing/solidification (to avoid shrinkage defects).
The hot top is then cut away and machined af%erscdidiication to give the final product
(the hemispherical shell). Here the mesh has been decomposed by CHACO [3] for eight

FIG. 1. The chalice mesh, decomposed for 8 processors by CHACO [3].

processors.
Although we have also simulated the filling of this mold, we present only solidL

fication results here. For this simulation, the mold cavity is assumed to be initially
full of quiescent liquid copper at 1270”C. Because only one 90° quadrant is simulated,
elements along the two vertical symmetry planes are assumed insulated. The top hor-
izontal plane of the hot top is assumed insulated because of its proximity (1 inch) to
the (hot) crucible. For the inner hemispherical surface (adjacent to the graphite mold),
a convective heat transfer boundary condition is applied with a heat transfer coeE-
cient of 25 W/m2K. For the outer surfaces, a coefficient of 15 W/m2K is used, which
corresponds to experimental values in stationary air.

Table 3 shows results of an implicit heat flow calculation with solidification on a finer
mesh than that shown in Figure 5.2, consisting of 46,386 unstructured hex elements,
again on a Digital AlphaServer 8400. Again we see excellent parallel efficiencies, wtilch
is quite encouraging since this is a more realistic example of the types of parallel casting
simulations Telluride must perform.

6 Future Work
we have shown that JTpack90, in conjunction with PGSLib, aclieves encouraging
parallel efficiencies for both simple and realistic problern.s withlg !l?ellu~ide. Neverthe-
less, much work remaltis. Piecondltioning is one area on which we have anly jast begun
to focus attention. For example, while we have had success using a bawdy-converged
CG solution of a low-order approximation to the full operator to precondition the CG
solutions in our projection flow idgorithml we also want to examine other strategies,
especially multilevel approaches.

TABLE 3

Implicit heat flow with solidification on 46,386-cell chalice mesh (300 MHz Digital AlphaServer

8400). a

CPU Time

Processors (ps/cell/cycle) EfHciency

1 5013 1.00

2 2169 1.15

4 1237 1.03

8 721 0.87

“http://uww. dec. com/info/alphaserver/

products.html

References

[1] S. Balay, W. Gropp, L. C. McInnes, and B. Smith, PETSC 2.0 users manual, Tech.
Rep. ANL-95/l 1, Argonne National Laboratory, Ott 1996.

[2] R. C. Ferrell, J. A. Turner, and D. B. Kothe, Developing portable, parallel
unstructured mesh simulations, in Eighth SIAM Conference on Parallel Processing
for Scientific Computing (this conference), Minneapolis, MN, 1997, SIAM.

[3] B. Hendrickson and R. Leland, The Chaco user’s guide: Version 2.0, Technical
Report SAND94-2692, Sandia National Laboratories, Albuquerque, NM, 1995.

[4] S. A. Hutchinson, J. N. Sha&d, and R. S. Tuminaro, Aztec user)s guide (version
1.0), Tech. Rep. SAND95-1559, Sandia National Laboratory, 1995.

[5] F. P. Incropera and D. P. De Witt, Fundamentals of Heat and Mass !Ikansfer,
John Wiley and Sons, NY, 3rd cd., 1990.

[6] D. R. Kincaid, T. C. Oppe, and W. D. Joubert, An introduction to the NSPCG
software package, Int. J. Num. Meth. Eng, 27 (1989), pp. 589–608.

[7] D. R. Kincaid, J. R. Respess, D. M. Young, and R. G. Grimes, ITPACK 2C: A
FORTRAN package for solving large spame lineap systems by adaptive accelerated
iterative methods, ACM Trans. Math. Software, 8 (1982), pp. 302–322.

[8] D. B. Kothe, R. C. Ferrell, S. J. Mosso, and J. A. Turner, A high-resoktion
finite-volume method for eficient parallel simulation of casting ppocesses on
unstructured meshes, in Eighth SIAM Conference on Parallel Processing for
Scientific Computing (this conference), Minneapolis, MN, 1997, SIAM.

[9] Y. Saad, Iterative Methods for Spame Lineup Systems, PWS Publishing Company,
Boston, MA, 1996.

[10] J. A. Turner, JTpack77 (LA-CC-93-5) - a Fo?’t?’cm 77 collection of lineup a~geb?’a
wutines,Tech. Rep. LA-UR-97-2, Los Alamos National Laboratory, Los Alamos,
NM, Jan. 1996.

	1:

